
 www.bnet4solutions.com | blucas@bnet4solutions.com

bSerialSplit Driver

bSerialSplit is a driver that can split/duplicate an input serial connection into several (up to 5)
output serial connection(s). Data passing through the driver can be displayed as ASCII, Hex
and/or Binary formats in the standard Lua Output window. bSerialSplit can also inject data into
a serial connection and when paired with bSerialProxy, remote serial devices/drivers can
connect to a local serial input.

bSerialSplit was created as a development tool for another driver (bPentair) that is connected to
the to-be controlled equipment via direct serial connection. I recall seeing and eventually found
Ryan E’s SerialSpy driver that allowed you to inspect the passing serial traffic. This was a great
start and inspiration but for a development tool, I had a few additional “wants”. See below for
discussion on Split Serial Connection, Head Pattern, Injection and Remote Serial Connection.

SETUP
1) Within your Control4 project, install an instance of the bSerialSplit driver for every serial

connection you would like to split, inspect or proxy
2) In Composer Connections, connect bSerialSplit’s RS-232 Input and a RS-232 Output so that

it is “in the middle” of two serial endpoints. You can connect up to 5 RS-232 Output devices
3) Set the Show Ascii/Hex/Binary properties for the type of data you are expecting. Note that

not all Hex and Binary data have an Ascii equivalent
4) Depending on the verbosity of the endpoints, you should immediately start seeing the serial

data in the Lua Output. Use Debug Level “3 – Info” for the cleanest data view

PROPERTIES

DRIVER SETUP
Upgrade Mode BNet Solutions drivers can automatically update themselves.

Options are “Automatic”, and “Upgrade Now”. See “Upgrade
Mode” section below

Admin Server Enabled Enables / Disables the driver’s Admin Server. See “Admin
Server” section below

Admin Port Listening port assigned to Admin Server
Admin Token Token required to access the driver’s Admin Server

LICENSE SETUP

License Key Key used to permanently enable driver functionality
License Status Display current state of driver’s license
Driver Version Installed driver version
MAC Address Unique network interface identifier for the Controller

BSERIALSPLIT SETUP
Show Ascii Show/Hide the Ascii representation of serial data
Show Hex Show/Hide the Hex representation of serial data
Show Binary Show/Hide the Binary representation of serial data

http://www.bnet4solutions.com/
mailto:blucas@bnet4solutions.com

 www.bnet4solutions.com | blucas@bnet4solutions.com

bSerialSplit Driver

Websocket Server Enabled Enables/Disables the Websocket Server
Websocket Port Websocket Server listening port

SERIAL DEBUG

Input Type Input data type in Send To Input and Send To Output properties
Head Pattern Header pattern to signify the start of a new packet. Can be a

comma-deiminated list or blank. For example “ff ff 00 00” or
“#,!”. See “Head Pattern” section below for more detail

Flush Buffer Delay When Head Pattern defined, this is the delay (in milliseconds)
that bSerialSplit will wait after the last fragment is received until
it flushes and send the buffer contents. Default is 1000 (1
second)

Send To Input Data to inject/send to the Input endpoint of the serial
connection. See “Injection” section below for more detail

Send To Outputs Data to inject/send to the Output endpoint(s) of the serial
connection. See “Injection” section below for more detail

Line Termination Character sequence to append to the injected data
-CR (Carriage Return)
-LF (Line Feed)
-CRLF (Carriage Return AND Line Feed)

DEBUG SETTINGS

Debug Mode Sets where the driver outputs debug information. See
“Troubleshooting” section below for more information

Debug Level Sets how much debug detail the driver outputs

ACTIONS

Send To Input Sends the data entered in Send To Input property. Used to
repeatedly send data after the property is set

Send To Outputs Sends the data entered in Send To Outputs property. Used to
repeatedly send data after the property is set

SPLIT SERIAL CONNECTION
I’m lucky enough to have a pool, but I don’t have two! I wanted to develop bPentair side-by-side
with the existing driver and not continually connect/reconnect the serial connection physically or
within Control4. With up to 5 outputs per serial input, I was able to develop sharing the
same/only pool input stream.

 /-RS232 Out1-> bPentair

Pool <-RS232 In-> bSerialSplit <--RS232 Out2-> Pentair Intellitouch

 \-RS232 Out3-> SerialLogger

HEAD PATTERN
Some serial data is received in nice distinct packets but most of the time this is not the case.
Reading and decoding a serial stream gets more tedious and time consuming when packet
fragments are split across multiple “reads”. Using the Head Pattern property, bSerialSplit will
buffer and display a packet in a single chunk instead of across a series of smaller chunks.
Multiple Head Patterns can be entered in a comma-separated list (no spaces unless a space is
part of the pattern).

http://www.bnet4solutions.com/
mailto:blucas@bnet4solutions.com

 www.bnet4solutions.com | blucas@bnet4solutions.com

bSerialSplit Driver

Below is a simple example of a data stream with and without a Head Pattern:
Head Pattern: None Head Pattern: “#,!00”

Input <-- Pentair Ascii : #POOLHT?

Input --> Output(s) Ascii : !00

Input --> Output(s) Ascii : POOLHT =

Input --> Output(s) Ascii : 0

Input <-- Pentair Ascii : #SPAHT?

Input --> Output(s) Ascii : !

Input --> Output(s) Ascii : 00

Input --> Output(s) Ascii : SPAHT=

Input --> Output(s) Ascii : 1

Input <-- Pentair Ascii : #POOLHT?

Input --> Output(s) Ascii : !00 POOLHT=0

Input <-- Pentair Ascii : #SPAHT?

Input --> Output(s) Ascii : !00 SPAHT=1

When Head Pattern is blank, bSerialSplit will display and forward data as it is received: 1 write
for 1 read. When Head Pattern is defined, bSerialSplit will flush (and write) the buffer after Flush
Buffer Delay. This is necessary when the input data stream is sparse or irregular.

INJECTION
bSerialSplit can inject data into the serial connection using the Send To Input and Send To
Outputs properties. Set the Input Type property (Ascii, Hex or Binary) to the appropriate data
type and enter the data to send in the appropriate input/output property. The data will be sent
when the property is “Set”. For repeat Sends (after the property is set), use the Send To Input
and Send To Outputs Actions.

Set the Line Termination property to the appropriate line termination sequence. Options are LF
(Line Feed), CR (Carriage Return), CRLF (Carriage Return and Line Feed) and None. The
below examples use CR Line Termination (Hex code 0d and binary 00001101).

When sending to input, “Output(s)” is replaced by Debug in the Lua Output and the Input Type is
marked with a “>” to show what was actually sent. Note that the data is sent to the connected
C4 Control Input and NOT to any other connected C4 Control Outputs. For example:

Input <-- Debug Ascii : >Test

Input <-- Debug Hex : 54 65 73 74 0d

Input <-- Debug Binary: 01010100 01100101 01110011 01110100 00001101

When input is injected from a connected bSerialProxy, “Output(s)” is replaced by “WS User”:

Input <-- WS User Ascii : >Test

Input <-- WS User Hex : 54 65 73 74 0d

Input <-- WS User Binary: 01010100 01100101 01110011 01110100 00001101

When sending to outputs, “Input” is replaced by “Debug” in the Lua Output and the Input Type is
marked with a “>” to show what was actually sent. Note that the data is sent to all connected C4
Control Outputs. For example:

Debug --> Output(s) Ascii : >Test

Debug --> Output(s) Hex : 54 65 73 74 0d

Debug --> Output(s) Binary: 01010100 01100101 01110011 01110100 00001101

REMOTE SERIAL CONNECTION
My development controller is separate hardware from my production controller and the two are
not in close proximity. By connecting a bSerialProxy* instance to bSerialSplit’s Websocket

http://www.bnet4solutions.com/
mailto:blucas@bnet4solutions.com

 www.bnet4solutions.com | blucas@bnet4solutions.com

bSerialSplit Driver

Server, I am able to develop on my development server but use the pool’s input serial
connection from my production controller. The setup looks like this:

[- Production Env -] [- Development Env -]

Pool <-RS232 In-> bSerialSplit <-WS-> bSerialProxy <-RS232 Out-> bPentair

*bSerialProxy is a separate driver from bSerialSplit and can be found on the BNet Solutions
website.

DEVELOPMENT DRIVER
bSerialSplit and bSerialProxy are intended for use as development tools. While I have run these
drivers on my production controller since early 2020, the volume of data over some serial
connections, data transformations (read: lots of strings, bit operations and “math” that Lua is not
known to excel at) and the extra serial and socket I/O all equals more “work”.

ADMIN SERVER
BNet Solutions drivers' have a built-in webserver that looks and behaves like the Properties,
Actions and Lua Output tabs for the driver in Composer. The Admin Server’s default port for the
bSerialSplit driver is 41500 and is configurable in the driver's properties. Using a web browser,
navigate to http://[controller ip]:41500 where “controller ip" is the IP Address of your Control4
Director (EA5, EA3, EA1, etc). For example, http://192.168.1.100:41500. The Admin Server is
protected by a challenge page that requires a token to continue. By default, the token is
"bSerialSplitAdmin". Once authenticated, the token is stored in a cookie (technically hashed,
then stored) so you won't need to log in every time. The token is configurable via the driver's
property page. The Admin Server is enabled by default but can be disabled entirely via the
driver's property page.

UPGRADE MODE
BNet Solutions drivers can automatically update themselves. New driver functionality or
capability is typically packaged as an incremental “Major” version (v3, v4 etc). “Minor” versions
(v2.3, v2.4) are typically maintenance releases that update underlying libraries, address a
specific issue or usability concern.
Automatic When “Automatic” is selected, the driver will upgrade/update itself when a new

version is available. This is currently the only option.
Update Now Checks for and upgrades to any newer Major or Minor version.

KNOWN ISSUES AND LIMITATIONS
- Requires C4 OS v2.10.X or greater
- C4 defines serial connections on a per-driver basis, not per-input/output connection. This

driver is expecting 9600 baud, no parity bit and 1 bit stop (9600/8-N-1). Other serial settings
will likely not work properly

TROUBLESHOOTING
All BNet Solutions products have an additional ‘Submit’ Debug Mode. With this mode selected,
the driver creates a unique log file to capture the Lua output based on the selected Debug Level
(usually set to "5 - Debug"). Once ‘Submit’ Debug Mode is deselected, either manually or when

http://www.bnet4solutions.com/
mailto:blucas@bnet4solutions.com
http://192.168.1.100:41500/

 www.bnet4solutions.com | blucas@bnet4solutions.com

bSerialSplit Driver

the Debug Timer expires, the Submit Debug Log is uploaded to the BNet Solutions Server for
analysis.

The server notifies me when Submit files are uploaded but if you have not purchased a license, I
will have no way to reach back out to you for troubleshooting so please email me your contact
information.

LEGAL
By using this driver, you are indicating that you have read and agree with the Policies and Terms
that govern its usage as published here.

MY CONTACT INFORMATION
You can reach me at blucas@bnet4solutions.com for comments or questions.

CHANGE LOG
v1 - 08/21 Initial Release

http://www.bnet4solutions.com/
mailto:blucas@bnet4solutions.com
https://bnet4solutions.com/legal

